Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 251: 121108, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244300

RESUMO

The high amount of densely hydrated organic substance present in sewage sludge impedes its filterability, thus restricting sludge disposal. Although chemical conditioning can facilitate filtration, the diverse sludge properties complicate the quantitative control of conditioning process. Investigating how to accurately quantify the optimal reagent demand (ORD) based on the critical physicochemical properties of the target sludge is an effective way to address the current issue. This study focused on the sewage and stockpiled sludge with varying properties, and their ORD under different chemical conditioning. The results showed that organic content, floc size, and bound water synergistically influenced conditioning process. The quantitative models were established between their coupling indicators and ORD, with coupling indicators including the ratio of organic content to floc size, the ratio of flow viscosity to floc size, and the ratio of the product of organic content and bound water to floc size. The linear correlation of the coupling indicator with ORD was higher than that of the traditional single-factor indicator. Furthermore, the inherent filterability of the sludge was somewhat separate from the adjustability of its filtration. A "dual-system" impact model was proposed to characterized the conditioning and filtration processes. These results provide theoretical guidance for the quantitative regulation of conditioning and filtration processes of sludge with complex characteristics.


Assuntos
Esgotos , Água , Esgotos/química , Água/química , Filtração , Viscosidade , Eliminação de Resíduos Líquidos/métodos
3.
Nat Commun ; 14(1): 3794, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365166

RESUMO

Rice farming threatens freshwater resources, while also being increasingly vulnerable to drought due to climate change. Rice farming needs to become more sustainable and resilient to climate change by improving irrigation drainage systems. Small water bodies, used to store drainage water and supply irrigation in traditional rice farming systems have gradually been abandoned in recent decades. This has resulted in a higher water footprint (WF) associated with rice farming due to increased freshwater usage and wastewater release, also leaving rice production more vulnerable to extreme weather events. Here, we propose how protecting and reactivating small water bodies for rice irrigation and drainage can decrease rice production WF in China by 30%, save 9% of China's freshwater consumption, increase irrigation self-sufficiency from 3% to 31%, and alleviate yield loss in dry years by 2-3%. These findings show that redesigning rice irrigation drainage systems can help meet water scarcity challenges posed by climate change.

4.
Microb Ecol ; 76(4): 1041-1052, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29644407

RESUMO

Understanding how microorganisms respond to environmental disturbance is one of the key focuses in microbial ecology. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are responsible for ammonia oxidation which is a crucial step in the nitrogen cycle. Although the physiology, distribution, and activity of AOA and AOB in soil have been extensively investigated, their recovery from a natural disturbance remains largely unknown. To assess the recovery capacities, including resistance and resilience, of AOA and AOB, soil samples were taken from a reservoir riparian zone which experienced periodically water flooding. The samples were classified into three groups (flooding, recovery, and control) for a high-throughput sequencing and quantitative PCR analysis. We used a relative quantitative index of both the resistance (RS) and resilience (RL) to assess the variation of gene abundance, alpha-diversity, and community composition. The AOA generally demonstrated a better recovery capability after the flooding disturbance compared to AOB. In particular, AOA were more resilient after the flooding disturbance. Taxa within the AOA and AOB showed different RS and RL values, with the most abundant taxa showing in general the highest RS indices. Soil NH4+ and Fe2+/Fe3+ were the main variables controlling the key taxa of AOA and AOB and probably influenced the resistance and resilience properties of AOA and AOB communities. The distinct mechanisms of AOA and AOB in maintaining community stability against the flooding disturbance might be linked to the different life-history strategies: the AOA community was more likely to represent r-strategists in contrast to the AOB community following a K-life strategy. Our results indicated that the AOA may play a vital role in ammonia oxidation in a fluctuating habitat and contribute to the stability of riparian ecosystem.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Inundações , Microbiota , Microbiologia do Solo , Archaea/classificação , Bactérias/classificação , China , Genes Arqueais , Genes Bacterianos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...